3.540 \(\int \frac{\cos ^3(c+d x)}{(a+b \cos (c+d x))^{5/2}} \, dx\)

Optimal. Leaf size=281 \[ -\frac{8 a^2 \left (a^2-2 b^2\right ) \sin (c+d x)}{3 b^2 d \left (a^2-b^2\right )^2 \sqrt{a+b \cos (c+d x)}}-\frac{2 a^2 \sin (c+d x) \cos (c+d x)}{3 b d \left (a^2-b^2\right ) (a+b \cos (c+d x))^{3/2}}-\frac{2 a \left (8 a^2-9 b^2\right ) \sqrt{\frac{a+b \cos (c+d x)}{a+b}} F\left (\frac{1}{2} (c+d x)|\frac{2 b}{a+b}\right )}{3 b^3 d \left (a^2-b^2\right ) \sqrt{a+b \cos (c+d x)}}+\frac{2 \left (-15 a^2 b^2+8 a^4+3 b^4\right ) \sqrt{a+b \cos (c+d x)} E\left (\frac{1}{2} (c+d x)|\frac{2 b}{a+b}\right )}{3 b^3 d \left (a^2-b^2\right )^2 \sqrt{\frac{a+b \cos (c+d x)}{a+b}}} \]

[Out]

(2*(8*a^4 - 15*a^2*b^2 + 3*b^4)*Sqrt[a + b*Cos[c + d*x]]*EllipticE[(c + d*x)/2, (2*b)/(a + b)])/(3*b^3*(a^2 -
b^2)^2*d*Sqrt[(a + b*Cos[c + d*x])/(a + b)]) - (2*a*(8*a^2 - 9*b^2)*Sqrt[(a + b*Cos[c + d*x])/(a + b)]*Ellipti
cF[(c + d*x)/2, (2*b)/(a + b)])/(3*b^3*(a^2 - b^2)*d*Sqrt[a + b*Cos[c + d*x]]) - (2*a^2*Cos[c + d*x]*Sin[c + d
*x])/(3*b*(a^2 - b^2)*d*(a + b*Cos[c + d*x])^(3/2)) - (8*a^2*(a^2 - 2*b^2)*Sin[c + d*x])/(3*b^2*(a^2 - b^2)^2*
d*Sqrt[a + b*Cos[c + d*x]])

________________________________________________________________________________________

Rubi [A]  time = 0.378858, antiderivative size = 281, normalized size of antiderivative = 1., number of steps used = 7, number of rules used = 7, integrand size = 23, \(\frac{\text{number of rules}}{\text{integrand size}}\) = 0.304, Rules used = {2792, 3021, 2752, 2663, 2661, 2655, 2653} \[ -\frac{8 a^2 \left (a^2-2 b^2\right ) \sin (c+d x)}{3 b^2 d \left (a^2-b^2\right )^2 \sqrt{a+b \cos (c+d x)}}-\frac{2 a^2 \sin (c+d x) \cos (c+d x)}{3 b d \left (a^2-b^2\right ) (a+b \cos (c+d x))^{3/2}}-\frac{2 a \left (8 a^2-9 b^2\right ) \sqrt{\frac{a+b \cos (c+d x)}{a+b}} F\left (\frac{1}{2} (c+d x)|\frac{2 b}{a+b}\right )}{3 b^3 d \left (a^2-b^2\right ) \sqrt{a+b \cos (c+d x)}}+\frac{2 \left (-15 a^2 b^2+8 a^4+3 b^4\right ) \sqrt{a+b \cos (c+d x)} E\left (\frac{1}{2} (c+d x)|\frac{2 b}{a+b}\right )}{3 b^3 d \left (a^2-b^2\right )^2 \sqrt{\frac{a+b \cos (c+d x)}{a+b}}} \]

Antiderivative was successfully verified.

[In]

Int[Cos[c + d*x]^3/(a + b*Cos[c + d*x])^(5/2),x]

[Out]

(2*(8*a^4 - 15*a^2*b^2 + 3*b^4)*Sqrt[a + b*Cos[c + d*x]]*EllipticE[(c + d*x)/2, (2*b)/(a + b)])/(3*b^3*(a^2 -
b^2)^2*d*Sqrt[(a + b*Cos[c + d*x])/(a + b)]) - (2*a*(8*a^2 - 9*b^2)*Sqrt[(a + b*Cos[c + d*x])/(a + b)]*Ellipti
cF[(c + d*x)/2, (2*b)/(a + b)])/(3*b^3*(a^2 - b^2)*d*Sqrt[a + b*Cos[c + d*x]]) - (2*a^2*Cos[c + d*x]*Sin[c + d
*x])/(3*b*(a^2 - b^2)*d*(a + b*Cos[c + d*x])^(3/2)) - (8*a^2*(a^2 - 2*b^2)*Sin[c + d*x])/(3*b^2*(a^2 - b^2)^2*
d*Sqrt[a + b*Cos[c + d*x]])

Rule 2792

Int[((a_.) + (b_.)*sin[(e_.) + (f_.)*(x_)])^(m_)*((c_.) + (d_.)*sin[(e_.) + (f_.)*(x_)])^(n_), x_Symbol] :> -S
imp[((b^2*c^2 - 2*a*b*c*d + a^2*d^2)*Cos[e + f*x]*(a + b*Sin[e + f*x])^(m - 2)*(c + d*Sin[e + f*x])^(n + 1))/(
d*f*(n + 1)*(c^2 - d^2)), x] + Dist[1/(d*(n + 1)*(c^2 - d^2)), Int[(a + b*Sin[e + f*x])^(m - 3)*(c + d*Sin[e +
 f*x])^(n + 1)*Simp[b*(m - 2)*(b*c - a*d)^2 + a*d*(n + 1)*(c*(a^2 + b^2) - 2*a*b*d) + (b*(n + 1)*(a*b*c^2 + c*
d*(a^2 + b^2) - 3*a*b*d^2) - a*(n + 2)*(b*c - a*d)^2)*Sin[e + f*x] + b*(b^2*(c^2 - d^2) - m*(b*c - a*d)^2 + d*
n*(2*a*b*c - d*(a^2 + b^2)))*Sin[e + f*x]^2, x], x], x] /; FreeQ[{a, b, c, d, e, f}, x] && NeQ[b*c - a*d, 0] &
& NeQ[a^2 - b^2, 0] && NeQ[c^2 - d^2, 0] && GtQ[m, 2] && LtQ[n, -1] && (IntegerQ[m] || IntegersQ[2*m, 2*n])

Rule 3021

Int[((a_.) + (b_.)*sin[(e_.) + (f_.)*(x_)])^(m_)*((A_.) + (B_.)*sin[(e_.) + (f_.)*(x_)] + (C_.)*sin[(e_.) + (f
_.)*(x_)]^2), x_Symbol] :> -Simp[((A*b^2 - a*b*B + a^2*C)*Cos[e + f*x]*(a + b*Sin[e + f*x])^(m + 1))/(b*f*(m +
 1)*(a^2 - b^2)), x] + Dist[1/(b*(m + 1)*(a^2 - b^2)), Int[(a + b*Sin[e + f*x])^(m + 1)*Simp[b*(a*A - b*B + a*
C)*(m + 1) - (A*b^2 - a*b*B + a^2*C + b*(A*b - a*B + b*C)*(m + 1))*Sin[e + f*x], x], x], x] /; FreeQ[{a, b, e,
 f, A, B, C}, x] && LtQ[m, -1] && NeQ[a^2 - b^2, 0]

Rule 2752

Int[((c_.) + (d_.)*sin[(e_.) + (f_.)*(x_)])/Sqrt[(a_) + (b_.)*sin[(e_.) + (f_.)*(x_)]], x_Symbol] :> Dist[(b*c
 - a*d)/b, Int[1/Sqrt[a + b*Sin[e + f*x]], x], x] + Dist[d/b, Int[Sqrt[a + b*Sin[e + f*x]], x], x] /; FreeQ[{a
, b, c, d, e, f}, x] && NeQ[b*c - a*d, 0] && NeQ[a^2 - b^2, 0]

Rule 2663

Int[1/Sqrt[(a_) + (b_.)*sin[(c_.) + (d_.)*(x_)]], x_Symbol] :> Dist[Sqrt[(a + b*Sin[c + d*x])/(a + b)]/Sqrt[a
+ b*Sin[c + d*x]], Int[1/Sqrt[a/(a + b) + (b*Sin[c + d*x])/(a + b)], x], x] /; FreeQ[{a, b, c, d}, x] && NeQ[a
^2 - b^2, 0] &&  !GtQ[a + b, 0]

Rule 2661

Int[1/Sqrt[(a_) + (b_.)*sin[(c_.) + (d_.)*(x_)]], x_Symbol] :> Simp[(2*EllipticF[(1*(c - Pi/2 + d*x))/2, (2*b)
/(a + b)])/(d*Sqrt[a + b]), x] /; FreeQ[{a, b, c, d}, x] && NeQ[a^2 - b^2, 0] && GtQ[a + b, 0]

Rule 2655

Int[Sqrt[(a_) + (b_.)*sin[(c_.) + (d_.)*(x_)]], x_Symbol] :> Dist[Sqrt[a + b*Sin[c + d*x]]/Sqrt[(a + b*Sin[c +
 d*x])/(a + b)], Int[Sqrt[a/(a + b) + (b*Sin[c + d*x])/(a + b)], x], x] /; FreeQ[{a, b, c, d}, x] && NeQ[a^2 -
 b^2, 0] &&  !GtQ[a + b, 0]

Rule 2653

Int[Sqrt[(a_) + (b_.)*sin[(c_.) + (d_.)*(x_)]], x_Symbol] :> Simp[(2*Sqrt[a + b]*EllipticE[(1*(c - Pi/2 + d*x)
)/2, (2*b)/(a + b)])/d, x] /; FreeQ[{a, b, c, d}, x] && NeQ[a^2 - b^2, 0] && GtQ[a + b, 0]

Rubi steps

\begin{align*} \int \frac{\cos ^3(c+d x)}{(a+b \cos (c+d x))^{5/2}} \, dx &=-\frac{2 a^2 \cos (c+d x) \sin (c+d x)}{3 b \left (a^2-b^2\right ) d (a+b \cos (c+d x))^{3/2}}-\frac{2 \int \frac{a^2-\frac{3}{2} a b \cos (c+d x)-\frac{1}{2} \left (4 a^2-3 b^2\right ) \cos ^2(c+d x)}{(a+b \cos (c+d x))^{3/2}} \, dx}{3 b \left (a^2-b^2\right )}\\ &=-\frac{2 a^2 \cos (c+d x) \sin (c+d x)}{3 b \left (a^2-b^2\right ) d (a+b \cos (c+d x))^{3/2}}-\frac{8 a^2 \left (a^2-2 b^2\right ) \sin (c+d x)}{3 b^2 \left (a^2-b^2\right )^2 d \sqrt{a+b \cos (c+d x)}}+\frac{4 \int \frac{\frac{1}{2} a b \left (a^2-3 b^2\right )+\frac{1}{4} \left (8 a^4-15 a^2 b^2+3 b^4\right ) \cos (c+d x)}{\sqrt{a+b \cos (c+d x)}} \, dx}{3 b^2 \left (a^2-b^2\right )^2}\\ &=-\frac{2 a^2 \cos (c+d x) \sin (c+d x)}{3 b \left (a^2-b^2\right ) d (a+b \cos (c+d x))^{3/2}}-\frac{8 a^2 \left (a^2-2 b^2\right ) \sin (c+d x)}{3 b^2 \left (a^2-b^2\right )^2 d \sqrt{a+b \cos (c+d x)}}-\frac{\left (a \left (8 a^2-9 b^2\right )\right ) \int \frac{1}{\sqrt{a+b \cos (c+d x)}} \, dx}{3 b^3 \left (a^2-b^2\right )}+\frac{\left (8 a^4-15 a^2 b^2+3 b^4\right ) \int \sqrt{a+b \cos (c+d x)} \, dx}{3 b^3 \left (a^2-b^2\right )^2}\\ &=-\frac{2 a^2 \cos (c+d x) \sin (c+d x)}{3 b \left (a^2-b^2\right ) d (a+b \cos (c+d x))^{3/2}}-\frac{8 a^2 \left (a^2-2 b^2\right ) \sin (c+d x)}{3 b^2 \left (a^2-b^2\right )^2 d \sqrt{a+b \cos (c+d x)}}+\frac{\left (\left (8 a^4-15 a^2 b^2+3 b^4\right ) \sqrt{a+b \cos (c+d x)}\right ) \int \sqrt{\frac{a}{a+b}+\frac{b \cos (c+d x)}{a+b}} \, dx}{3 b^3 \left (a^2-b^2\right )^2 \sqrt{\frac{a+b \cos (c+d x)}{a+b}}}-\frac{\left (a \left (8 a^2-9 b^2\right ) \sqrt{\frac{a+b \cos (c+d x)}{a+b}}\right ) \int \frac{1}{\sqrt{\frac{a}{a+b}+\frac{b \cos (c+d x)}{a+b}}} \, dx}{3 b^3 \left (a^2-b^2\right ) \sqrt{a+b \cos (c+d x)}}\\ &=\frac{2 \left (8 a^4-15 a^2 b^2+3 b^4\right ) \sqrt{a+b \cos (c+d x)} E\left (\frac{1}{2} (c+d x)|\frac{2 b}{a+b}\right )}{3 b^3 \left (a^2-b^2\right )^2 d \sqrt{\frac{a+b \cos (c+d x)}{a+b}}}-\frac{2 a \left (8 a^2-9 b^2\right ) \sqrt{\frac{a+b \cos (c+d x)}{a+b}} F\left (\frac{1}{2} (c+d x)|\frac{2 b}{a+b}\right )}{3 b^3 \left (a^2-b^2\right ) d \sqrt{a+b \cos (c+d x)}}-\frac{2 a^2 \cos (c+d x) \sin (c+d x)}{3 b \left (a^2-b^2\right ) d (a+b \cos (c+d x))^{3/2}}-\frac{8 a^2 \left (a^2-2 b^2\right ) \sin (c+d x)}{3 b^2 \left (a^2-b^2\right )^2 d \sqrt{a+b \cos (c+d x)}}\\ \end{align*}

Mathematica [A]  time = 1.22305, size = 188, normalized size = 0.67 \[ \frac{2 \left (\frac{a^2 b \sin (c+d x) \left (\left (9 b^3-5 a^2 b\right ) \cos (c+d x)-4 a^3+8 a b^2\right )}{\left (a^2-b^2\right )^2}+\frac{\left (\frac{a+b \cos (c+d x)}{a+b}\right )^{3/2} \left (a \left (8 a^2 b-8 a^3+9 a b^2-9 b^3\right ) F\left (\frac{1}{2} (c+d x)|\frac{2 b}{a+b}\right )+\left (-15 a^2 b^2+8 a^4+3 b^4\right ) E\left (\frac{1}{2} (c+d x)|\frac{2 b}{a+b}\right )\right )}{(a-b)^2}\right )}{3 b^3 d (a+b \cos (c+d x))^{3/2}} \]

Antiderivative was successfully verified.

[In]

Integrate[Cos[c + d*x]^3/(a + b*Cos[c + d*x])^(5/2),x]

[Out]

(2*((((a + b*Cos[c + d*x])/(a + b))^(3/2)*((8*a^4 - 15*a^2*b^2 + 3*b^4)*EllipticE[(c + d*x)/2, (2*b)/(a + b)]
+ a*(-8*a^3 + 8*a^2*b + 9*a*b^2 - 9*b^3)*EllipticF[(c + d*x)/2, (2*b)/(a + b)]))/(a - b)^2 + (a^2*b*(-4*a^3 +
8*a*b^2 + (-5*a^2*b + 9*b^3)*Cos[c + d*x])*Sin[c + d*x])/(a^2 - b^2)^2))/(3*b^3*d*(a + b*Cos[c + d*x])^(3/2))

________________________________________________________________________________________

Maple [B]  time = 12.308, size = 907, normalized size = 3.2 \begin{align*} \text{result too large to display} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(cos(d*x+c)^3/(a+b*cos(d*x+c))^(5/2),x)

[Out]

-(-(-2*b*cos(1/2*d*x+1/2*c)^2-a+b)*sin(1/2*d*x+1/2*c)^2)^(1/2)*(-2/b^3/(-2*b*sin(1/2*d*x+1/2*c)^4+(a+b)*sin(1/
2*d*x+1/2*c)^2)^(1/2)*(sin(1/2*d*x+1/2*c)^2)^(1/2)*(-2*b/(a-b)*sin(1/2*d*x+1/2*c)^2+(a+b)/(a-b))^(1/2)*(3*Elli
pticF(cos(1/2*d*x+1/2*c),(-2*b/(a-b))^(1/2))*a-EllipticE(cos(1/2*d*x+1/2*c),(-2*b/(a-b))^(1/2))*a+EllipticE(co
s(1/2*d*x+1/2*c),(-2*b/(a-b))^(1/2))*b)+6/b^3*a^2/sin(1/2*d*x+1/2*c)^2/(-2*sin(1/2*d*x+1/2*c)^2*b+a+b)/(a^2-b^
2)*(-2*b*sin(1/2*d*x+1/2*c)^4+(a+b)*sin(1/2*d*x+1/2*c)^2)^(1/2)*((sin(1/2*d*x+1/2*c)^2)^(1/2)*(-2*b/(a-b)*sin(
1/2*d*x+1/2*c)^2+(a+b)/(a-b))^(1/2)*EllipticE(cos(1/2*d*x+1/2*c),(-2*b/(a-b))^(1/2))*a-(sin(1/2*d*x+1/2*c)^2)^
(1/2)*(-2*b/(a-b)*sin(1/2*d*x+1/2*c)^2+(a+b)/(a-b))^(1/2)*EllipticE(cos(1/2*d*x+1/2*c),(-2*b/(a-b))^(1/2))*b+2
*b*cos(1/2*d*x+1/2*c)*sin(1/2*d*x+1/2*c)^2)-2/b^3*a^3*(1/6/b/(a-b)/(a+b)*cos(1/2*d*x+1/2*c)*(-2*b*sin(1/2*d*x+
1/2*c)^4+(a+b)*sin(1/2*d*x+1/2*c)^2)^(1/2)/(cos(1/2*d*x+1/2*c)^2+1/2*(a-b)/b)^2+8/3*b*sin(1/2*d*x+1/2*c)^2/(a-
b)^2/(a+b)^2*cos(1/2*d*x+1/2*c)*a/(-(-2*b*cos(1/2*d*x+1/2*c)^2-a+b)*sin(1/2*d*x+1/2*c)^2)^(1/2)+(3*a-b)/(3*a^3
+3*a^2*b-3*a*b^2-3*b^3)*(sin(1/2*d*x+1/2*c)^2)^(1/2)*((2*b*cos(1/2*d*x+1/2*c)^2+a-b)/(a-b))^(1/2)/(-2*b*sin(1/
2*d*x+1/2*c)^4+(a+b)*sin(1/2*d*x+1/2*c)^2)^(1/2)*EllipticF(cos(1/2*d*x+1/2*c),(-2*b/(a-b))^(1/2))-4/3*a/(a-b)/
(a+b)^2*(sin(1/2*d*x+1/2*c)^2)^(1/2)*((2*b*cos(1/2*d*x+1/2*c)^2+a-b)/(a-b))^(1/2)/(-2*b*sin(1/2*d*x+1/2*c)^4+(
a+b)*sin(1/2*d*x+1/2*c)^2)^(1/2)*(EllipticF(cos(1/2*d*x+1/2*c),(-2*b/(a-b))^(1/2))-EllipticE(cos(1/2*d*x+1/2*c
),(-2*b/(a-b))^(1/2)))))/sin(1/2*d*x+1/2*c)/(-2*sin(1/2*d*x+1/2*c)^2*b+a+b)^(1/2)/d

________________________________________________________________________________________

Maxima [F]  time = 0., size = 0, normalized size = 0. \begin{align*} \int \frac{\cos \left (d x + c\right )^{3}}{{\left (b \cos \left (d x + c\right ) + a\right )}^{\frac{5}{2}}}\,{d x} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(cos(d*x+c)^3/(a+b*cos(d*x+c))^(5/2),x, algorithm="maxima")

[Out]

integrate(cos(d*x + c)^3/(b*cos(d*x + c) + a)^(5/2), x)

________________________________________________________________________________________

Fricas [F]  time = 0., size = 0, normalized size = 0. \begin{align*}{\rm integral}\left (\frac{\sqrt{b \cos \left (d x + c\right ) + a} \cos \left (d x + c\right )^{3}}{b^{3} \cos \left (d x + c\right )^{3} + 3 \, a b^{2} \cos \left (d x + c\right )^{2} + 3 \, a^{2} b \cos \left (d x + c\right ) + a^{3}}, x\right ) \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(cos(d*x+c)^3/(a+b*cos(d*x+c))^(5/2),x, algorithm="fricas")

[Out]

integral(sqrt(b*cos(d*x + c) + a)*cos(d*x + c)^3/(b^3*cos(d*x + c)^3 + 3*a*b^2*cos(d*x + c)^2 + 3*a^2*b*cos(d*
x + c) + a^3), x)

________________________________________________________________________________________

Sympy [F(-1)]  time = 0., size = 0, normalized size = 0. \begin{align*} \text{Timed out} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(cos(d*x+c)**3/(a+b*cos(d*x+c))**(5/2),x)

[Out]

Timed out

________________________________________________________________________________________

Giac [F]  time = 0., size = 0, normalized size = 0. \begin{align*} \int \frac{\cos \left (d x + c\right )^{3}}{{\left (b \cos \left (d x + c\right ) + a\right )}^{\frac{5}{2}}}\,{d x} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(cos(d*x+c)^3/(a+b*cos(d*x+c))^(5/2),x, algorithm="giac")

[Out]

integrate(cos(d*x + c)^3/(b*cos(d*x + c) + a)^(5/2), x)